

WBMA063-05 – Numerical Linear Algebra

Mock Exam

2025-2026

Instructions:

1. **Write your name and student number of the top of each sheet of writing paper!**
2. Use the writing (lined) and scratch (blank) paper provided, raise your hand if you need more paper.
3. Start each question on a new page.

This exam consists of 4 questions for a total of 90 points. 10 points are free.

1. Let $A \in \mathbb{R}^{n \times n}$ be a non-singular matrix.
 - (a) (4 points) Define the LU decomposition of A . Also define the pivoted LU decomposition of A .
 - (b) (8 points) Assume the LU decomposition of $A = LU$ exists. Show that the dominant computational cost of computing L and U is $\mathcal{O}(\frac{2}{3}n^3)$ flops.
 - (c) (5 points) Suppose you have computed a pivoted LU decomposition of A , $PA = LU$. Describe an efficient algorithm to explicitly compute the inverse A^{-1} . What is the computational cost of your algorithm?
Hint: consider building A^{-1} one column at a time.
 - (d) (10 points) Let $A = A^T \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Suppose we computed a Cholesky decomposition of A in floating point arithmetic with a backward stable algorithm. Then, still in floating point arithmetic, we use the computed Cholesky factors to solve the linear system $A\mathbf{x} = \mathbf{b}$. Show the computed solution $\hat{\mathbf{x}}$ is backward stable. You may use the fact that a triangular solve algorithm is backward stable.
 - (e) (4 points) An alternative approach to solve symmetric positive definite linear systems is to use Conjugate Gradients (CG). Reflect on the different contexts in which you might prefer a Cholesky-based approach to CG, and on the different contexts in which you might prefer CG to Cholesky. Explain your answer.

2. Let $A \in \mathbb{R}^{m \times n}$ with $m > n$ be a matrix with singular value decomposition $A = U\Sigma V^T$, where Σ is square.

- (a) (3 points) For each of the factors U , Σ , and V in the singular value decomposition, provide their dimension and their special structure.
- (b) (3 points) Assume A has full column rank. Express the solution of the least squares problem

$$\mathbf{x}^* = \arg \min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2$$

in terms of the singular value decomposition factors. You need not prove the result.

- (c) (8 points) Again assume A has full rank. Show that

$$\|A\mathbf{x}^* - \mathbf{b}\|_2 = \|U_{\perp}^T \mathbf{b}\|_2,$$

where $U_{\perp} \in \mathbb{R}^{m \times (m-n)}$ is the orthogonal complement of the left singular vectors U . That is, $U_{\perp} \in \mathbb{R}^{m \times (m-n)}$ is such that

$$U_F = [U \quad U_{\perp}]$$

is a square orthogonal matrix.

- (d) (4 points) Computing the solution to a least squares problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2$$

via the singular value decomposition of A is backward stable. Suppose this algorithm is used in floating point arithmetic to compute the solution $\hat{\mathbf{x}}$ to the least squares problem. What does it mean for $\hat{\mathbf{x}}$ to be backward stable? Provide a mathematical expression.

- (e) (3 points) Suppose $\hat{\mathbf{x}}$ is a backward stable solution to

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2,$$

which has exact solution \mathbf{x}^* . What can you say about the size of

$$\frac{\|\hat{\mathbf{x}} - \mathbf{x}^*\|}{\|\mathbf{x}^*\|}?$$

Is it always, sometimes, or never close to machine precision? Support your reasoning.

3. Let $A \in \mathbb{R}^{n \times n}$ be diagonalizable with eigenpairs $(\lambda_i, \mathbf{v}_i)$ where all \mathbf{v}_i have unit norm. Assume the eigenvalues are all real and are ordered as

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n| > 0.$$

The power method starts by initializing a vector $\mathbf{x}_0 \in \mathbb{R}^n$ with unit norm, and then iterating as:

For $k = 0, 1, 2, \dots$

$$\begin{aligned}\mathbf{y}_k &= A\mathbf{x}_k \\ \mathbf{x}_{k+1} &= \mathbf{y}_k / \|\mathbf{y}_k\|_2.\end{aligned}$$

(a) (6 points) Expand \mathbf{x}_0 in the basis formed by the eigenvectors \mathbf{v}_i :

$$\mathbf{x}_0 = \sum_{i=1}^n \alpha_i \mathbf{v}_i.$$

Show

$$\mathbf{x}_k = \text{sign}(\lambda_1)^k \frac{\alpha_1 \mathbf{v}_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k \mathbf{v}_i}{\|\alpha_1 \mathbf{v}_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k \mathbf{v}_i\|_2}.$$

(b) (4 points) Explain what happens to \mathbf{x}_k as k tends to infinity. Additionally, explain how the dominant eigenvalue λ_1 can be approximated from \mathbf{x}_k .

(c) (6 points) Assume A is symmetric. Show

$$|\mathbf{x}_k^* A \mathbf{x}_k - \lambda_1| \approx \left(\left| \frac{\lambda_2}{\lambda_1} \right|^{2k} \right),$$

using the simplification that, as $k \rightarrow \infty$,

$$\mathbf{x}_k \approx \text{sign}(\lambda_1)^k \frac{\alpha_1 \mathbf{v}_1 + \alpha_2 \left(\frac{\lambda_2}{\lambda_1}\right)^k \mathbf{v}_2}{\|\alpha_1 \mathbf{v}_1 + \alpha_2 \left(\frac{\lambda_2}{\lambda_1}\right)^k \mathbf{v}_2\|_2}.$$

(d) (3 points) How would you adapt the algorithm to instead find the eigenvector corresponding to the eigenvalue of A closest to -2? Explain your reasoning.

4. Consider a non-singular diagonalizable matrix $A \in \mathbb{R}^{n \times n}$.

(a) (4 points) The k -dimensional Krylov subspace associated to the linear system $Ax = b$ is

$$\mathcal{K}_k(A, \mathbf{b}) = \text{span} \{ \mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{k-1}\mathbf{b} \}.$$

Define a matrix $K_k \in \mathbb{R}^{n \times k}$ whose columns are the natural basis vectors for the Krylov subspace normalized; that is,

$$K_k = \begin{bmatrix} \frac{\mathbf{b}}{\|\mathbf{b}\|_2} & \frac{A\mathbf{b}}{\|A\mathbf{b}\|_2} & \frac{A^2\mathbf{b}}{\|A^2\mathbf{b}\|_2} & \cdots & \frac{A^{k-1}\mathbf{b}}{\|A^{k-1}\mathbf{b}\|_2} \end{bmatrix}.$$

Qualitatively, explain why the matrix K_k becomes increasingly ill-conditioned as k increases.

(b) (8 points) It is instead advised to use the Arnoldi algorithm to build a basis for the Krylov subspace $\mathcal{K}_k(A, \mathbf{b})$. This algorithm computes an orthogonal basis $\{\mathbf{q}_j\}$ for the Krylov subspace:

$$\mathcal{K}_k(A, \mathbf{b}) = \text{span} \{ \mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_k \}, \quad \mathbf{q}_i^T \mathbf{q}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

The matrix

$$Q_k = [\mathbf{q}_1 \ \mathbf{q}_2 \ \dots \ \mathbf{q}_k]$$

is then well-conditioned. The Arnoldi algorithm (in exact arithmetic) can be written as

$$\mathbf{q}_1 = \mathbf{b}/\|\mathbf{b}\|_2$$

For $j = 1, 2, \dots, k$

$$\mathbf{v} = A\mathbf{q}_j$$

$$\mathbf{w} = \mathbf{v} - \sum_{i=1}^j (\mathbf{q}_i^T \mathbf{v}) \mathbf{q}_i$$

$$\mathbf{q}_{j+1} = \mathbf{w}/\|\mathbf{w}\|_2$$

This is not how the algorithm is implemented in floating point arithmetic. Describe the algorithm as it is implemented. Then, show that after k steps, we have the identity

$$AQ_k = Q_{k+1} \tilde{H}_k,$$

for a $(k+1) \times k$ matrix \tilde{H}_k . Describe the structure of this matrix.

(c) (4 points) Let the eigendecomposition of A be given by $A = X\Lambda X^{-1}$. The residual at the k th GMRES iterate \mathbf{x}_k can be bounded by

$$\frac{\|\mathbf{b} - Ax_k\|_2}{\|\mathbf{b}\|_2} \leq \kappa(X) \min_{p \in \mathcal{P}_k} \max_{\lambda \in \Lambda(A)} |p(\lambda)|,$$

where we assumed $\mathbf{x}_0 = \mathbf{0}$, \mathcal{P}_k is a subset of all degree k polynomials p with $p(0) = 1$, and $\Lambda(A)$ is the set of all eigenvalues of A . Comment on the expected convergence behaviour based on the eigenvalues of A . Distinguish between the case when A is normal and when A is not normal.

Hint: A is normal when $A^T A = A A^T$. The eigenvectors of a normal matrix form an orthogonal basis.

(d) (3 points) Let A be symmetric matrix with $m < n$ distinct eigenvalues. Will GM-RES converge to the exact solution in at most m iterations? Explain your reasoning.