
WBMA063-05 – Numerical Linear Algebra
Mock Exam
2025-2026

Instructions:

1. Write your name and student number of the top of each sheet of writing
paper!

2. Use the writing (lined) and scratch (blank) paper provided, raise your hand if you need
more paper.

3. Start each question on a new page.

This exam consists of 4 questions for a total of 90 points. 10 points are free.

1. Let A ∈ Rn×n be a non-singular matrix.

(a) (4 points) Define the LU decomposition of A. Also define the pivoted LU decom-
position of A.

(b) (8 points) Assume the LU decomposition of A = LU exists. Show that the domi-
nant computational cost of computing L and U is O(2

3
n3) flops.

(c) (5 points) Suppose you have computed a pivoted LU decomposition of A, PA =
LU . Describe an efficient algorithm to explicitly compute the inverse A−1. What
is the computational cost of your algorithm?
Hint: consider building A−1 one column at a time.

(d) (10 points) Let A = AT ∈ Rn×n be a symmetric positive definite matrix. Suppose
we computed a Cholesky decomposition of A in floating point arithmetic with a
backward stable algorithm. Then, still in floating poitn arithmetic, we use the
computed Cholesky factors to solve the linear system Ax = b. Show the computed
solution x̂ is backward stable. You may use the fact that a triangular solve algorithm
is backward stable.

(e) (4 points) An alternative approach to solve symmetric positive definite linear sys-
tems is to use Conjugate Gradients (CG). Reflect on the different contexts in which
you might prefer a Cholesky-based approach to CG, and on the different contexts
in which you might prefer CG to Cholesky. Explain your answer.
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2. Let A ∈ Rm×n with m > n be a matrix with singular value decomposition A = UΣV T ,
where Σ is square.

(a) (3 points) For each of the factors U , Σ, and V in the singular value decomposition,
provide their dimension and their special structure.

(b) (3 points) Assume A has full column rank. Express the solution of the least squares
problem

x∗ = arg min
x∈Rn

∥Ax− b∥2

in terms of the singular value decomposition factors. You need not prove the result.

(c) (8 points) Again assume A has full rank. Show that

∥Ax∗ − b∥2 = ∥UT
⊥b∥2,

where U⊥ ∈ Rm×(m−n) is the orthogonal complement of the left singular vectors U .
That is, U⊥ ∈ Rm×(m−n) is such that

UF =
[
U U⊥

]
is a square orthogonal matrix.

(d) (4 points) Computing the solution to a least squares problem

min
x∈Rn

∥Ax− b∥2

via the singular value decomposition of A is backward stable. Suppose this algo-
rithm is used in floating point arithmetic to compute the solution x̂ to the least
squares problem. What does it mean for x̂ to be backward stable? Provide a
mathematical expression.

(e) (3 points) Suppose x̂ is a backward stable solution to

min
x∈Rn

∥Ax− b∥2,

which has exact solution x∗. What can you say about the size of

∥x̂− x∗∥
∥x∗∥

?

Is it always, sometimes, or never close to machine precision? Support your reason-
ing.
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3. Let A ∈ Rn×n be diagonalizable with eigenpairs (λi,vi) where all vi have unit norm.
Assume the eigenvalues are all real and are ordered as

|λ1| > |λ2| > · · · > |λn| > 0.

The power method starts by initializing a vector x0 ∈ Rn with unit norm, and then
iterating as:

For k = 0, 1, 2, . . .

yk = Axk

xk+1 = yk/∥yk∥2.

(a) (6 points) Expand x0 in the basis formed by the eigenvectors vi:

x0 =
n∑

i=1

αivi.

Show

xk = sign(λ1)
k

α1v1 +
n∑

i=2

αi

(
λi

λ1

)k
vi

∥α1v1 +
n∑

i=2

αi

(
λi

λ1

)k
vi∥2

.

(b) (4 points) Explain what happens to xk as k tends to infinity. Additionally, explain
how the dominant eigenvalue λ1 can be approximated from xk.

(c) (6 points) Assume A is symmetric. Show

|x∗
kAxk − λ1| ≈

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)
,

using the simplification that, as k → ∞,

xk ≈ sign(λ1)
k

α1v1 + α2

(
λ2

λ1

)k
v2

∥α1v1 + α2

(
λ2

λ1

)k
v2∥2

.

(d) (3 points) How would you adapt the algorithm to instead find the eigenvector cor-
responding to the eigenvalue of A closest to -2? Explain your reasoning.
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4. Consider a non-singular diagonalizable matrix A ∈ Rn×n.

(a) (4 points) The k-dimensional Krylov subspace associated to the linear system Ax =
b is

Kk(A, b) = span
{
b, Ab, A2b, . . . , Ak−1b

}
.

Define a matrix Kk ∈ Rn×k whose columns are the natural basis vectors for the
Krylov subspace normalized; that is,

Kk =
[

b
∥b∥2

Ab
∥Ab∥2

A2b
∥A2b∥2 . . . Ak−1b

∥Ak−1b∥2

]
.

Qualitatively, explain why the matrix Kk becomes increasingly ill-conditioned as k
increases.

(b) (8 points) It is instead advised to use the Arnoldi algorithm to build a basis for the
Krylov subspace Kk(A, b). This algorithm computes an orthogonal basis {qj} for
the Krylov subspace:

Kk(A, b) = span {q1, q2, . . . , qk} , qT
i qj =

{
1 if i = j

0 if i ̸= j

The matrix
Qk =

[
q1 q2 . . . qk

]
is then well-conditioned. The Arnoldi algorithm (in exact arithmetic) can be written
as

q1 = b/∥b∥2
For j = 1, 2, . . . , k

v = Aqj

w = v −
j∑

i=1

(qT
i v)qi

qj+1 = w/∥w∥2

This is not how the algorithm is implemented in floating point arithmetic. Describe
the algorithm as it is implemented. Then, show that after k steps, we have the
identity

AQk = Qk+1H̃k,

for a (k + 1)× k matrix H̃k. Describe the structure of this matrix.

(c) (4 points) Let the eigendecomposition of A be given by A = XΛX−1. The residual
at the kth GMRES iterate xk can be bounded by

∥b− Axk∥2
∥b∥2

≤ κ(X) min
p∈Pk

max
λ∈Λ(A)

|p(λ)|,
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where we assumed x0 = 0, Pk is a subset of all degree k polynomials p with p(0) = 1,
and Λ(A) is the set of all eigenvalues of A. Comment on the expected convergence
behaviour based on the eigenvalues of A. Distinguish between the case when A is
normal and when A is not normal.
Hint: A is normal when ATA = AAT . The eigenvectors of a normal matrix form
an orthogonal basis.

(d) (3 points) Let A be symmetric matrix with m < n distinct eigenvalues. Will GM-
RES converge to the exact solution in at mostm iterations? Explain your reasoning.
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